Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
Nutrients ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38674857

RESUMO

Disordered eating contributes to weight gain, obesity, and type 2 diabetes (T2D), but the precise mechanisms underlying the development of different eating patterns and connecting them to specific metabolic phenotypes remain unclear. We aimed to identify genetic variants linked to eating behaviour and investigate its causal relationships with metabolic traits using Mendelian randomization (MR). We tested associations between 30 genetic variants and eating patterns in individuals with T2D from the Volga-Ural region and investigated causal relationships between variants associated with eating patterns and various metabolic and anthropometric traits using data from the Volga-Ural population and large international consortia. We detected associations between HTR1D and CDKAL1 and external eating; between HTR2A and emotional eating; between HTR2A, NPY2R, HTR1F, HTR3A, HTR2C, CXCR2, and T2D. Further analyses in a separate group revealed significant associations between metabolic syndrome (MetS) and the loci in CRP, ADCY3, GHRL, CDKAL1, BDNF, CHRM4, CHRM1, HTR3A, and AKT1 genes. MR results demonstrated an inverse causal relationship between external eating and glycated haemoglobin levels in the Volga-Ural sample. External eating influenced anthropometric traits such as body mass index, height, hip circumference, waist circumference, and weight in GWAS cohorts. Our findings suggest that eating patterns impact both anthropometric and metabolic traits.


Assuntos
Diabetes Mellitus Tipo 2 , Comportamento Alimentar , Grelina , Análise da Randomização Mendeliana , Fenótipo , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/etiologia , Feminino , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/etiologia , tRNA Metiltransferases/genética , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/análise , Pessoa de Meia-Idade , Índice de Massa Corporal , Adenilil Ciclases/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Adulto , Circunferência da Cintura , Variação Genética
2.
RNA ; 30(5): 548-559, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531647

RESUMO

N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.


Assuntos
RNA de Transferência , RNA , Humanos , Metilação , RNA de Transferência/química , RNA/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética
3.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326863

RESUMO

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Assuntos
Adenina , Neoplasias Colorretais , RNA Longo não Codificante , Animais , Humanos , Adenina/análogos & derivados , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Epigênese Genética , Histona Desmetilases/genética , Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Menor , RNA , RNA Longo não Codificante/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
5.
Pathol Res Pract ; 254: 154987, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237400

RESUMO

The cell proliferation protein 123 (CDC123) is involved in the synthesis of the eukaryotic initiation factor 2 (eIF2), which regulates eukaryotic translation. Although CDC123 is considered a candidate oncogene in breast cancer, its expression and role in Hepatocellular Carcinoma (HCC) remain unknown. Herein, we obtained the CDC123 RNA-seq and clinical prognostic data from the TCGA database. The mRNA level revealed that CDC123 was highly expressed in HCC patients, and Kaplan-Meier analysis implied better prognoses in HCC patients with low CDC123 expression (P < 0.001). The multivariate Cox analysis revealed that the CDC123 level was an independent prognostic factor (P < 0.001). We further confirmed a high CDC123 expression in HCC cell lines. Additionally, we found that CDC123 knockdown in HCC cell lines significantly inhibited cellular proliferation, invasion, and migration. Moreover, CDC123 was co-expressed with the CDK5 Regulatory Subunit-Associated Protein 1 Like 1 (CDKAL1), whose mRNA level was decreased after silencing CDC123. Therefore, we hypothesized that CDC123 promotes HCC progression by regulating CDKAL1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proliferação de Células/genética , Prognóstico , RNA Mensageiro , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
6.
RNA ; 30(2): 171-187, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071471

RESUMO

In Saccharomyces cerevisiae, a single homolog of the tRNA methyltransferase Trm10 performs m1G9 modification on 13 different tRNAs. Here we provide evidence that the m1G9 modification catalyzed by S. cerevisiae Trm10 plays a biologically important role for one of these tRNA substrates, tRNATrp Overexpression of tRNATrp (and not any of 38 other elongator tRNAs) rescues growth hypersensitivity of the trm10Δ strain in the presence of the antitumor drug 5-fluorouracil (5FU). Mature tRNATrp is depleted in trm10Δ cells, and its levels are further decreased upon growth in 5FU, while another Trm10 substrate (tRNAGly) is not affected under these conditions. Thus, m1G9 in S. cerevisiae is another example of a tRNA modification that is present on multiple tRNAs but is only essential for the biological function of one of those species. In addition to the effects of m1G9 on mature tRNATrp, precursor tRNATrp species accumulate in the same strains, an effect that is due to at least two distinct mechanisms. The levels of mature tRNATrp are rescued in the trm10Δmet22Δ strain, consistent with the known role of Met22 in tRNA quality control, where deletion of met22 causes inhibition of 5'-3' exonucleases that catalyze tRNA decay. However, none of the known Met22-associated exonucleases appear to be responsible for the decay of hypomodified tRNATrp, based on the inability of mutants of each enzyme to rescue the growth of the trm10Δ strain in the presence of 5FU. Thus, the surveillance of tRNATrp appears to constitute a distinct tRNA quality control pathway in S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exonucleases/metabolismo , Fluoruracila/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Triptofano/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
7.
J Cell Mol Med ; 28(1): e18006, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850543

RESUMO

Hepatoblastoma, the most frequently diagnosed primary paediatric liver tumour, bears the lowest somatic mutation burden among paediatric neoplasms. Therefore, it is essential to identify pathogenic germline genetic variants, especially those in oncogenic genes, for this disease. The tRNA methyltransferase 6 noncatalytic subunit (TRMT6) forms a tRNA methyltransferase complex with TRMT61A to catalyse adenosine methylation at position N1 of RNAs. TRMT6 has displayed tumour-promoting functions in several cancer types. However, the contribution of its genetic variants to hepatoblastoma remains unclear. In this study, we investigated the association between four TRMT6 polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A and rs236110 C > A) and the risk of hepatoblastoma in a cohort of 313 cases and 1446 healthy controls. Germline DNA was subjected to polymorphism genotyping via the TaqMan qPCR method. Odds ratio (OR) and 95% confidence interval (CI) were used to determine hepatoblastoma susceptibility variants. The rs236170 A > G, rs236188 G > A and rs236110 C > A polymorphisms were significantly associated with hepatoblastoma risk. Combination analysis of the four polymorphisms revealed that children bearing 1-4 risk genotypes were at significantly enhanced hepatoblastoma risk compared to those without risk genotype (adjusted OR = 1.52, 95% CI = 1.19-1.95, p = 0.0008). We also conducted stratification analyses by age, sex and clinical stage. Ultimately, we found that the rs236110 C > A was significantly associated with the downregulation of MCM8, a neighbouring gene of TRMT6. In conclusion, we identified three susceptibility loci in the TRMT6 gene for hepatoblastoma. Our findings warrant further validation by extensive case-control studies across different ethnicities.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Hepatoblastoma/genética , Estudos de Casos e Controles , Neoplasias Hepáticas/genética , Polimorfismo Genético , tRNA Metiltransferases/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
8.
Nucleic Acids Res ; 52(3): 1341-1358, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113276

RESUMO

MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Peptídeo Hidrolases , tRNA Metiltransferases , Humanos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Peptídeo Hidrolases/genética , Proteólise , RNA Mitocondrial/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , Proteínas Mitocondriais/metabolismo
9.
Acc Chem Res ; 56(24): 3595-3603, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048440

RESUMO

ConspectusTransfer ribonucleic acid (tRNA) is the most highly modified RNA species in the cell, and loss of tRNA modifications can lead to growth defects in yeast as well as metabolic, neurological, and mitochondrial disorders in humans. Significant progress has been made toward identifying the enzymes that are responsible for installing diverse modifications in tRNA, revealing a landscape of fascinating biological and mechanistic diversity that remains to be fully explored. Most early discoveries of tRNA modification enzymes were in model systems, where many enzymes were not strictly required for viability, an observation somewhat at odds with the extreme conservation of many of the same enzymes throughout multiple domains of life. Moreover, many tRNA modification enzymes act on more than one type of tRNA substrate, which is not necessarily surprising given the similar overall secondary and tertiary structures of tRNA, yet biochemical characterization has revealed interesting patterns of substrate specificity that can be challenging to rationalize on a molecular level. Questions about how many enzymes efficiently select a precise set of target tRNAs from among a structurally similar pool of molecules persist.The tRNA methyltransferase Trm10 provides an exciting paradigm to study the biological and mechanistic questions surrounding tRNA modifications. Even though the enzyme was originally characterized in Saccharomyces cerevisiae where its deletion causes no detectable phenotype under standard lab conditions, several more recently identified phenotypes provide insight into the requirement for this modification in the overall quality control of the tRNA pool. Studies of Trm10 in yeast also revealed another characteristic feature that has turned out to be a conserved feature of enzymes throughout the Trm10 family tree. We were initially surprised to see that purified S. cerevisiae Trm10 was capable of modifying tRNA substrates that were not detectably modified by the enzyme in vivo in yeast. This pattern has continued to emerge as we and others have studied Trm10 orthologs from Archaea and Eukarya, with enzymes exhibiting in vitro substrate specificities that can differ significantly from in vivo patterns of modification. While this feature complicates efforts to predict substrate specificities of Trm10 enzymes in the absence of appropriate genetic systems, it also provides an exciting opportunity for studying how enzyme activities can be regulated to achieve dynamic patterns of biological tRNA modification, which have been shown to be increasingly important for stress responses and human disease. Finally, the intriguing diversity in target nucleotide modification that has been revealed among Trm10 orthologs is distinctive among known tRNA modifying enzymes and necessitates unusual and likely novel catalytic strategies for methylation that are being revealed by biochemical and structural studies directed toward various family members. These efforts will no doubt yield more surprising discoveries in terms of tRNA modification enzymology.


Assuntos
Proteínas de Saccharomyces cerevisiae , tRNA Metiltransferases , Humanos , tRNA Metiltransferases/química , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Metilação , Proteínas de Saccharomyces cerevisiae/química , RNA de Transferência/metabolismo
10.
Methods Enzymol ; 692: 69-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37925188

RESUMO

Transfer RNA (tRNA) delivers amino acids to the ribosome and functions as an essential adapter molecule for decoding codons on the messenger RNA (mRNA) during protein synthesis. Before attaining their proper activity, tRNAs undergo multiple post-transcriptional modifications with highly diversified roles such as stabilization of the tRNA structure, recognition of aminoacyl tRNA synthetases, precise codon-anticodon recognition, support of viral replication and onset of immune responses. The synthesis of the majority of modified nucleosides is catalyzed by a site-specific tRNA modification enzyme. This chapter provides a detailed protocol for using mutational profiling to analyze the enzymatic function of a tRNA methyltransferase in a high-throughput manner. In a previous study, we took tRNA m1A22 methyltransferase TrmK from Geobacillus stearothermophilus as a model tRNA methyltransferase and applied this protocol to gain mechanistic insights into how TrmK recognizes the substrate tRNAs. In theory, this protocol can be used unaltered for studying enzymes that catalyze modifications at the Watson-Crick face such as 1-methyladenosine (m1A), 3-methylcytosine (m3C), 3-methyluridine (m3U), 1-methylguanosine (m1G), and N2,N2-dimethylguanosine (m22G).


Assuntos
Anticódon , RNA de Transferência , RNA de Transferência/metabolismo , Códon/genética , Biossíntese de Proteínas , tRNA Metiltransferases/genética , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
11.
Cancer Biol Ther ; 24(1): 2263921, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800580

RESUMO

RNA methyltransferase nucleolar protein p120 (NOP2), commonly referred to as NOP2/Sun RNA methyltransferase family member 1 (NSUN1), is involved in cell proliferation and is highly expressed in various cancers. However, its role in high-grade serous ovarian cancer (HGSOC) remains unclear. Our study investigated the expression of NOP2 in HGSOC tissues and normal fimbria tissues, and found that NOP2 was significantly upregulated in HGSOC tissues. Our experiments showed that NOP2 overexpression promoted cell proliferation in vivo and in vitro and increased the migration and invasion ability of HGSOC cells in vitro. Furthermore, we identified Rap guanine nucleotide exchange factor 4 (RAPGEF4) as a potential downstream target of NOP2 in HGSOC. Finally, our findings suggest that the regulation of NOP2 and RAPGEF4 may depend on m5C methylation levels.


Assuntos
Neoplasias Ovarianas , RNA , Humanos , Feminino , Metiltransferases/genética , Neoplasias Ovarianas/genética , Proliferação de Células , Proteínas Nucleares/metabolismo , Fatores de Troca do Nucleotídeo Guanina , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
12.
mBio ; 14(5): e0141623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37589464

RESUMO

IMPORTANCE: As deficiencies in tRNA modifications have been linked to human diseases such as cancer and diabetes, much research has focused on the modifications' impacts on translational regulation in eukaryotes. However, the significance of tRNA modifications in bacterial physiology remains largely unexplored. In this paper, we demonstrate that the m7G tRNA methyltransferase TrmB is crucial for a top-priority pathogen, Acinetobacter baumannii, to respond to stressors encountered during infection, including oxidative stress, low pH, and iron deprivation. We show that loss of TrmB dramatically attenuates a murine pulmonary infection. Given the current efforts to use another tRNA methyltransferase, TrmD, as an antimicrobial therapeutic target, we propose that TrmB, and other tRNA methyltransferases, may also be viable options for drug development to combat multidrug-resistant A. baumannii.


Assuntos
Acinetobacter baumannii , Pneumonia , Animais , Humanos , Camundongos , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Farmacorresistência Bacteriana Múltipla/genética , Estresse Oxidativo , Pneumonia/microbiologia , Pneumonia/patologia , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
13.
EMBO Rep ; 24(10): e56808, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642556

RESUMO

Nervous system function rests on the formation of functional synapses between neurons. We have identified TRMT9B as a new regulator of synapse formation and function in Drosophila. TRMT9B has been studied for its role as a tumor suppressor and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Whereas Trm9 homolog ALKBH8 is ubiquitously expressed, TRMT9B is enriched in the nervous system. However, in the absence of animal models, TRMT9B's role in the nervous system has remained unstudied. Here, we generate null alleles of TRMT9B and find it acts postsynaptically to regulate synaptogenesis and promote neurotransmission. Through liquid chromatography-mass spectrometry, we find that ALKBH8 catalyzes canonical tRNA wobble uridine methylation, raising the question of whether TRMT9B is a methyltransferase. Structural modeling studies suggest TRMT9B retains methyltransferase function and, in vivo, disruption of key methyltransferase residues blocks TRMT9B's ability to rescue synaptic overgrowth, but not neurotransmitter release. These findings reveal distinct roles for TRMT9B in the nervous system and highlight the significance of tRNA methyltransferase family diversification in metazoans.


Assuntos
Saccharomyces cerevisiae , tRNA Metiltransferases , Animais , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metilação , Saccharomyces cerevisiae/genética , Uridina/química , Uridina/genética , Uridina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
14.
Nucleic Acids Res ; 51(14): 7496-7519, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283053

RESUMO

Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.


Assuntos
Precursores de RNA , Proteínas de Saccharomyces cerevisiae , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Spliceossomos/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proliferação de Células/genética , Biossíntese de Proteínas , Metiltransferases/genética , tRNA Metiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Genet Med ; 25(9): 100900, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226891

RESUMO

PURPOSE: 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. METHODS: We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. RESULTS: We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. CONCLUSION: Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Homozigoto , Transtornos do Neurodesenvolvimento/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA , Linhagem , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
16.
Sci China Life Sci ; 66(10): 2295-2309, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204604

RESUMO

TRMT1 is an N2-methylguanosine (m2G) and N2,N2-methylguanosine (m22G) methyltransferase that targets G26 of both cytoplasmic and mitochondrial tRNAs. In higher eukaryotes, most cytoplasmic tRNAs with G26 carry m22G26, although the majority of mitochondrial G26-containing tRNAs carry m2G26 or G26, suggesting differences in the mechanisms by which TRMT1 catalyzes modification of these tRNAs. Loss-of-function mutations of human TRMT1 result in neurological disorders and completely abrogate tRNA:m22G26 formation. However, the mechanism underlying the independent catalytic activity of human TRMT1 and identity of its specific substrate remain elusive, hindering a comprehensive understanding of the pathogenesis of neurological disorders caused by TRMT1 mutations. Here, we showed that human TRMT1 independently catalyzes formation of the tRNA:m2G26 or m22G26 modification in a substrate-dependent manner, which explains the distinct distribution of m2G26 and m22G26 on cytoplasmic and mitochondrial tRNAs. For human TRMT1-mediated tRNA:m22G26 formation, the semi-conserved C11:G24 serves as the determinant, and the U10:A25 or G10:C25 base pair is also required, while the size of the variable loop has no effect. We defined the requirements of this recognition mechanism as the "m22G26 criteria". We found that the m22G26 modification occurred in almost all the higher eukaryotic tRNAs conforming to these criteria, suggesting the "m22G26 criteria" are applicable to other higher eukaryotic tRNAs.


Assuntos
Doenças do Sistema Nervoso , tRNA Metiltransferases , Humanos , Metilação , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-37055162

RESUMO

INTRODUCTION: To identify the association of the cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1 (CDKAL1) gene polymorphism with gestational diabetes mellitus (GDM) in the Chinese population. RESEARCH DESIGN AND METHODS: This case-control study enrolled 835 pregnant women with GDM and 870 pregnant women without diabetes who underwent antenatal examination during 24 to 28 gestational weeks at the Maternal and Child Health Hospital of Hubei Province from January 15, 2018 to March 31, 2019. Trained nurses collected their clinical information and blood samples. CDKAL1 gene rs10440833, rs10946398, rs4712523, rs4712524, rs7754840, rs7756992 and rs9465871 loci were genotyped by Agena MassARRAY system. SPSS V.26.0 software and online SHesis were used to analyze the relationship between CDKAL1 gene polymorphism and GDM susceptibility. RESULTS: After being adjusted for maternal age, prepregnancy body mass index (BMI), parity and family history of type 2 diabetes mellitus (T2DM), CDKAL1 gene rs10440833 (AA vs TT, OR=1.631, 95% CI 1.192 to 2.232), rs10946398 (CC vs AA, OR=1.400, 95% CI 1.028 to 1.905), rs4712523 (GG vs AA, OR=1.409, 95% CI 1.038 to 1.913), rs4712524 (GG vs AA, OR=1.418, 95% CI 1.043 to 1.929) and rs7754840 (CC vs GG, OR=1.407, 95% CI 1.036 to 1.911) polymorphisms were all associated with the increased risk of GDM. In addition, there was a powerful linkage disequilibrium (LD) among rs10946398, rs4712523, rs4712524 and rs7754840 (D'>0.900, r2>0.900). And there were significant differences in haplotype CGGC (OR=1.207, 95% CI 1.050 to 1.387) and AAAG (OR=0.829, 95% CI 0.721 o 0.952, p=0.008) between the GDM group and the control group. CONCLUSIONS: rs10440833, rs10946398, rs4712523, rs4712524 and rs7754840 of CDKAL1 gene are associated with GDM susceptibility in central Chinese population.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , tRNA Metiltransferases , Feminino , Humanos , Gravidez , Estudos de Casos e Controles , Diabetes Gestacional/genética , População do Leste Asiático , Polimorfismo de Nucleotídeo Único , tRNA Metiltransferases/genética
18.
Adv Sci (Weinh) ; 10(12): e2206542, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36786012

RESUMO

Cancer stem-like cells (CSCs) have a unique translation mode, but little is understood about the process of elongation, especially the contribution of tRNA modifications to the maintenance of CSCs properties. Here, it is reported that, contrary to the initial aim, a tRNA-modifying methylthiotransferase CDKAL1 promotes CSC-factor SALL2 synthesis by assembling the eIF4F translation initiation complex. CDKAL1 expression is upregulated in patients with worse prognoses and is essential for maintaining CSCs in rhabdomyosarcoma (RMS) and common cancers. Translatome analysis reveals that a group of mRNAs whose translation is CDKAL1-dependent contains cytosine-rich sequences in the 5' untranslated region (5'UTR). Mechanistically, CDKAL1 promotes the translation of such mRNAs by organizing the eIF4F translation initiation complex. This complex formation does not require the enzyme activity of CDKAL1 but requires only the NH2 -terminus domain of CDKAL1. Furthermore, sites in CDKAL1 essential for forming the eIF4F complex are identified and discovered candidate inhibitors of CDKAL1-dependent translation.


Assuntos
Fator de Iniciação 4F em Eucariotos , Neoplasias , Humanos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
19.
J Zhejiang Univ Sci B ; 24(1): 50-63, 2023 Jan 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36632750

RESUMO

Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-|1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , tRNA Metiltransferases , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
20.
Mol Neurobiol ; 60(4): 2223-2235, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646969

RESUMO

Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Humanos , Idoso , Doença de Alzheimer/patologia , RNA/metabolismo , Lesões Encefálicas Traumáticas/patologia , Metilação de DNA , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA